
Charter

Prepared for:

COS 333: Advanced Programming
Techniques

Instructors:
Brian Kernighan and Christopher Moretti

Contributors:
Usama Bin Shafqat, Waqarul Islam, Matt
Rosen, Manisha Sivaiah, and Kelly Zhou

Issued:
05.14.2017

Honor Code
This document represents our own work in accordance with University Regulations.

USER GUIDE
	 Core Features..3
	 Using Charter...4

DEVELOPER GUIDE
	 Frontend...5
	 Backend..6

2

A BIT
ABOUT US
—

Charter is a mobile app designed to make travel more

convenient, comfortable, and affordable for University students.

OVERVIEW

Charter provides a centralized platform for students to search
for, create, and join rides with other students to common
destinations by removing the need for ineffective listserv emails
and social media posts that currently exist from students
looking to share rides. Charter connects students who share
a common destination and time to coordinate travel and split
costs. Through the integration of Stripe and Apple Pay, Charter
enables accountability deposits and fare splitting. The application
also allows for direct calling of Ubers to make the entire travel

Making travel

more convenient

Ride splitting,

simplified

By students, for

students

Uber
Integration

CORE FEATURES

—

Timeline

The timeline feature allows riders within a group to message each
other and communicate through the mobile platform. Through this
central communication portal, riders can keep each other updated with
any relevant trip information (e.g., changes in pickup location, delays,
cancellations, etc.). This allows riders to communicate without the
need for exchanging phone numbers or personal contact information,
and keeps all of the communication within the single platform. This
also provides a social component, allowing riders to get to know each
other before the trip. Given that the riders are likely all students from
the same University, sharing a car for an hour--and all the planning
beforehand--is a great opportunity to make new friends on campus!

Accountability

Upon joining a ride, users will be required to
make a non-refundable deposit of $10 to ensure
that those who join a ride commit and fulfill
the ride. At the end of the ride, the deposit will
go toward the total cost of the ride, and the
remaining cost will be split among the riders,
as explained in the Fair Splitting section below.

Fare Splitting

After completing a ride, the ride owner (the user who created
the ride) will be prompted to enter the total cost of the ride,
and the application will split the fare among the riders and
let the ride owner know how much each rider should pay.

Uber
Integration

After creating a ride with the set time, destination, and pickup location,
the ride owner can call the Uber directly from an application (should
the riders choose to take an Uber) at the designated time. Once the
ride owner selects the “Request Uber” button on the application, the
Uber application will open with the destination and pickup location
pre-filled and ready to request. Calling the Uber is not required, so
riders also have the option of taking another form of transportation
they might believe to be cheaper (e.g., if one of the riders has their
own car or they want to look into other ride-sharing platforms).

4

Upon first opening the application, first-time users will be prompted to sign up with their
University email address and password. New users will receive an email to verify their accounts
before beginning use of the application. Returning users will be prompted to log in to their
accounts each time they open the app for use.

After logging into the app, users can search for existing rides based on their desired destination
and time of travel. Users can choose a destination, date, and time from pickers on the screen,
and any existing rides that best match the specifications will appear on the next screen.

SIGN UP/LOG IN

SEARCH FOR A RIDE

USING CHARTER

After finding a convenient existing ride on the app, users can join the ride. Upon joining, the new
riders will be prompted to pay a non-refundable deposit of $10, which will ultimately go toward
paying their share of the cost of the ride. This deposit is collected to hold users accountable
for completing the rides they join, as explained in the Accountability section listed among the
features.

CREATE A RIDE

JOIN A RIDE

01

02

03

04

05

Users can also create a new ride if a convenient one does not already exist. A new ride can be
created by entering the destination, pick-up location, date, and time from pickers on the screen.
Once a user creates a ride, he or she becomes the ride owner and is responsible for ordering
the Uber (if the group chooses to travel with Uber) and marking the ride as complete at the end.
The newly created ride will now be available for searches that correspond with its ride details for
other users to join.

LEAVE A RIDE

In the event that a user needs to leave a ride that was joined, the user can select the ride
and choose to leave. The user will be reminded that the deposit paid upon joining will
be lost and be asked to confirm their decision to leave. After leaving, the user will no
longer be a part of the ride and their deposit will still go toward the total cost of the ride.

COLOR
The primarily white

screens offer an overall
clean and crisp look

while the teal and blue
accents bring bright

pops of color.

FONT
Custom font used for
the headers, buttons,
etc. differentiates the
UI from generic apps
and adds to Charter’s

clean but fun feel.

LOGO
Created in Photoshop
and Sketch, the logo is
intended to be simple
and distinct to attract

users on the app store.

BUTTONS
The placement of buttons
throughout Charter makes

the navigation feel intuitive.
TouchableHighlight offers the
user instant gratification upon

action.

CREATE SCREEN
We used the tcomb-form-native library to create
a native form for users to enter the details of a new
charter (the date, pickup location and time, and
destination). As the user enters information, the
relevant fields in the domain model are updated. After
the user taps SAVE, the information in the domain
model is pushed to a new node on the database.

SEARCH SCREEN
The SearchScreen is the primary screen when a

user opens or logs in to the app. It features two
inputs: destination and time. Both components

are rendered using the tcomb library. Pickers were
chosen over text input to reduce the potential for

errors in the input. The SEARCH button navigates to
a ListScreen with the user’s selections passed in as
the params and features the relevant search results.

SCREEN INFORMATION

5

FRONTEND

—

UI DESIGN

PROFILE SCREEN
The ProfileScreen features the Charters owned and
joined, and the option to logout. Native-base components,
such as Separator, List, and Thumbnail, were used to
organize this information to maintain even spacing and
an overall cohesive appearance. The Charters listed
in each section navigate to different versions of the
DetailScreen.

DETAILS SCREEN
The DetailScreen has three different incarnations. All versions feature an image of the
destination, the ride owner, a list of students who have already joined the ride, and the timeline.
The default DetailScreen is navigated to from the SearchScreen and features the ability to join
a ride which opens the Apple Pay or Android Pay popup. The other two versions are navigated
to from the ProfileScreen. If any of the owned Charters are selected, the user is directed to
a an OwnDetailScreen that allows the owner to request an Uber or indicate that the ride is
completed. If one of the joined Charters are selected, the user is directed to a JoinDetailScreen
that includes the option to leave the ride.

6

7

BACKEND
—

FIREBASE

We used Google’s Firebase platform (essentially a Backend-as-a-Service) to host a NoSQL database
for Charter. Although Firebase currently does not officially support React Native, we used the
official implementation guide designed for Web (primarily Node.js) with some key changes to
handle React Native. Our work was made more intuitive by the fact that both Firebase and React
Native rely on a state-based model where the state of the Firebase listener in the app changes
when a database update occurs and the ensuing change of state in the React Component leads
to a re-rendering of the UI.

The NoSQL database is accessed by listeners attached to various views of the app. Listeners
attached to ListScreen and ProfileScreen pull a list of the appropriate charters to populate lists
such as the Search Results and the user’s Owned Charters and Joined Charters. On the Charter
Detail screen, the complete details of the Charter are downloaded from database including the
names of the other riders on the trip as well as the timeline associated with it.

The database is structured as a JSON object. There are two main nodes: users and charters.
Following best practices for NoSQL/Firebase that allows for efficient scaling, we have some
necessary duplication of data because of flattened data structures. For example, for each charter
that a user joins, we store the UID of the charter in the user’s charters-joined list and also store
the user’s UID in the charter’s riders list. The UID is a unique identifier for every charter and user
in the database that is automatically generated by Firebase and is guaranteed to be unique and
consistent. Using the UID, we can download all the information for a charter or user by efficiently
subsetting the NoSQL database and this provides for extremely fast information retrieval with
nearly zero lag.

Every time the Firebase realtime database is accessed in the app, the request is wrapped in
a function call (login(), signup(), join(), leave() etc.) which makes it very simple to change the
underlying database platform in the future to another NoSQL database such as MongoDB if, for
example, more advanced search capabilities are required. The actual firebase query is structured
as a reference to a specific node in the database (such as users/UID/email for example) and then
a function on that reference.

8

AUTHENTICATION

We use the Firebase authentication platform for managing users in the app. When a user signs
up, they are asked to complete a short form indicating their email address, desired password
and full name. They are then sent an email with a verification link to ensure that it is an actual
account (if domain restriction is introduced in a later version, this would also be an easy way
to enforce it). Once the email is verified and the signup formalities are completed, a new node
is created for the user under the users node with the email and name pre-filled and with the
unique userid assigned by Firebase upon signup being the node’s key. The signup, login and
email verification calls are made using the functions in Firebase.auth(). The currently logged in
user’s uid can always be accessed using Firebase.auth().currentUser.uid and any other registered
details of the user can then be accessed using a reference to this UID in the database. The user’s
data input of their email address and password is handled through the Form component in
NativeBase which ensures local security of the data and then transmits it to the Firebase Auth
using an encrypted protocol.

STRIPE

We use Stripe to process payments for ride deposits, each of which is $10. This is currently an
arbitrary amount that can be modified from the source code of the app. Most Charters will have
a cost over $10/per person if they are need splitting. Stripe has its authentication key (available
from the Stripe dashboard upon login) embedded in the app, the money from deposits is sent to
the developer account before it goes to the trip owner. In terms of implementation, we were able
to integrate a React Native package called TIPSI Stripe that has adopted the iOS and Android APIs
for React Native. Apple Pay and Android Pay allow for a variety of card systems to be inputted,
which then send the data on to Stripe. The only maintenance required here will be sending the
money from the Stripe account to the appropriate ride owners (which can be automated in the
future).

UBER

We decided to include the ability to be able to call an Uber directly from the app. Uber is the most
popular ride-sharing platform that is used on campus, so we thought being able to easily call one
when the riders want to start their trip would be essential in being able to have a seamless riding
experience. At first, we attempted to use the React Native Uber Rides module to get access to
the API for Uber, but it turned out this was not a maintained package. As a result, we turned to
deep-linking an Uber button which essentially opens the Uber app and prefills information about
the ride such as the destination and the pickup location. This is done through a simple link that is
attached to an Uber-styled button. The parameters of the link can be changed pretty easily. For
example, a ride going to Penn Station can be described in a single deep link. Here we have the
Uber Authentication Key from the developer console, as well as formatted text addresses for the
dropoff that also have longitude and latitude information.

uber://?action=setPickup&client_id=yv1QEhEQm8SsCbaptSahN_Cg5DEDAmm0&pickup=my_lo-
cation&dropoff[formatted_address]=Penn%20Station%2C%20West%2033rd%20Street%2C%20
New%20York%2C%20NY%2C%20United%20States&dropoff[latitude]=40.750303&dropoff[lon-
gitude]=-73.990906’

